Improving Cardio-Mechanic Inference by Combining in Vivo Strain Data with Ex Vivo Volume–Pressure Data

نویسندگان

چکیده

Abstract Cardio-mechanic models show substantial promise for improving personalised diagnosis and disease risk prediction. However, estimating the constitutive parameters from strains extracted in vivo cardiac magnetic resonance scans can be challenging. The reason is that circumferential strains, which are comparatively easy to extract, not sufficiently informative uniquely estimate all parameters, while longitudinal radial difficult extract at high precision. In present study, we how cardio-mechanic parameter inference improved by incorporating prior knowledge population-wide ex volume–pressure data. Our work based on an empirical law known as Klotz curve. We propose assess two alternative methodological frameworks integrating data via curve into framework, using both a non-empirical distribution.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Including in-vivo IVUS data in ex-vivo validated dataset

Intravascular Ultrasound (IVUS) data validation is usually performed by comparing postmortem (ex-vivo) IVUS data and corresponding histological analysis of the tissue, obtaining a reliable ground truth. The main drawback of this method is the few amount of available training dataset. In this work we propose a method to include examples from in-vivo labeled plaque to the ex-vivo training dataset...

متن کامل

modeling loss data by phase-type distribution

بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...

Improving the Inference of Gene Expression Regulatory Networks with Data Aggregation Approach

Introduction: The major issue for the future of bioinformatics is the design of tools to determine the functions and all products of single-cell genes. This requires the integration of different biological disciplines as well as sophisticated mathematical and statistical tools. This study revealed that data mining techniques can be used to develop models for diagnosing high-risk or low-risk lif...

متن کامل

A tool for the extraction of new disease biomarkers from ex vivo and in vivo data

Motivation and Objectives Recent studies have demonstrated the correlation among features of diseases obtained from ex vivo and in vivo Molecular Imaging (MI) studies (e.g. Genomics and Positron Emission Tomography, PET, Strauss et al., 2008; Genomics and Computerized Tomography, CT, Segal et al., 2007), opening a new role to non invasive clinical MI technologies in the current approach of pers...

متن کامل

Improving the Inference of Gene Expression Regulatory Networks with Data Aggregation Approach

Introduction: The major issue for the future of bioinformatics is the design of tools to determine the functions and all products of single-cell genes. This requires the integration of different biological disciplines as well as sophisticated mathematical and statistical tools. This study revealed that data mining techniques can be used to develop models for diagnosing high-risk or low-risk lif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied statistics

سال: 2022

ISSN: ['1467-9876', '0035-9254']

DOI: https://doi.org/10.1111/rssc.12560